91书院(91shuyuan.com)更新快,无弹窗!
学的范畴,相信在座每个人都能听懂。
接下来就让我们开始吧。
我们将地图上的每个区域看作图中的一个顶点。
如果两个区域有公共边界,则在图中用一条边连接这两个顶点。
这样,地图着色问题就等价于给图的顶点着色,使得相邻顶点颜色不同,且总共不超过四种颜色。
也就是说证明任何平面图中都必然包含某些特定子图结构,这些结构无法避免出现。
那麽对于每种不可避免的配置,证明如果一个大图包含这种配置,可以通过简化,例如移除或合并某些顶点或边,将其转化为更小的图,且不影响四色定理的成立。
这样就把这个问题简化了。」
林燃接着说:「当然四色问题不止这些。
我们还需要引入一个叫放电法的图论技术。它是我基于肯佩教授的链方法和希伍德教授在证明五色地图定理过程中对图的顶点度丶面度分析的方法后思考出来的一种新的方法。」
林燃简单介绍了一下链方法和五色定理的证明后接着说:
「放电法的核心思想可以分为三个步骤:
第一个是初始电荷分配,我们给图中的每个顶点或面分配一个初始电荷。
电荷的数值通常与顶点的度数或面的度数相关。」
(度数是指连接到该顶点的边数,边数是指面边界上的边数)
「例如,一个常见的分配方式是给每个顶点v分配电荷6deg(v),其中deg(v)是顶点的度数。
第二个是放电规则,设计一组规则,允许电荷在顶点或面之间转移。
如果一个顶点的度数较低,它可以从相邻的度数较高的顶点借电荷;度数较高的面将电荷分配给度数较低的相邻面」
「最后是电荷调整后的分析。
在应用放电规则后,检查每个顶点或面的最终电荷。通过分析电荷分布,可以证明图中某些特定配置,例如某些子图或环,必然存在,或者某些性质必然成立」
林燃最后总结道:「最后我们只需要把放电法应用在四色问题上就可以了。
先根据平面图的欧拉公式V-E+F=2,这里V是顶点数,E是边数,F是面数,就能推到出平均面度必定小于6.
所以我们可以给每一个面f分配初始电荷为def(f)-6,def(f)是面的度数。
然后放电规则允许电荷在面之间或者定点与面之间转移。
通过放电过程,我们能够证明某些特定配置会导致负电荷出现。这些配置构成一个不可避免集,即任何平面图中都至少包含其中一种配置。
那麽在四色定理的证明中,我们只需要通过放电法找出一个包含有限种配置的集合,然后再进一步验证这些配置的可约性,最终就可以证明四色定理。」
林燃讲完后,大家听懂倒是听懂了,但和林燃一样,觉得这个工作过于繁琐。
就属于你能找到方法,但这个方法可能你一辈子也算不出来。
「我知道大家会觉得我提的方法是无稽之谈,因为计算量太过于庞大,人类数学家可能穷极一生也没办法做出结果。
但我想要提醒各位,现在我们有了计算机这样的工具。
我相信有计算机的配合,我们是能够在很短时间内,可能一年,可能两年时间内利用计算机把这个问题解决的。」
四色问题原本应该在1976年,由数学家凯尼斯·阿佩尔和沃夫冈·哈肯藉助电子计算机得到一个完全的证明。
他们藉助的方法就是林燃所说的这个方法-放电法。
不过和林燃比起来,这两位的名声显然远远不如。
因此林燃提出后,大家都没质疑,听说过计算机的在思索要怎麽利用计算机解决,没听说过的则在打听计算机是什麽。
多说两句,阿佩尔和哈肯解决四色问题用到的计算机是IBM于1972年发布的370-168,共计耗时1200个小时。
但不代表当下的IBM7090就不能解决。
IBM7090的128KB内存不足以同时存储所有配置和中间结果,可以分批处理数据,并依赖磁带进行存储。
配置数据和验证结果会占用大量存储空间,可以使用磁带存储中间结果,确保数据在计算过程中的完整性。
「希望四年之后的数学家大会,能够听到四色问题已经被解决的好消息。」林燃最后总结道。
林燃的学术报告,对于了解计算机的数学家来说如听仙乐耳暂明,就好像拨开迷雾直接能够看到结果。
越了解计算机,越想赶快回研究所或者学校开始证明四色问题。
方法都不用自己想,林燃已经写的很清楚了。
甚至后续的数学家大会都不想再参加了。
谁先做出结果,谁就证明了困扰